frailtyEM: An R Package for Estimating Semiparametric Shared Frailty Models
نویسندگان
چکیده
When analyzing correlated time to event data, shared frailty (random effect) models are particularly attractive. However, the estimation of such models has proved challenging. In semiparametric models, this is further complicated by the presence of the nonparametric baseline hazard. Although recent years have seen an increased availability of software for fitting frailty models, most software packages focus either on a small number of distributions of the random effect, or support only on a few data scenarios. frailtyEM is an R package that provides maximum likelihood estimattion of semiparametric shared frailty models using the Expectation-Maximization algorithm. The implementation is consistent across several scenarios, including possibly left truncated clustered failures and recurrent events in both calendar time and gap time formulation. A large number of frailty distributions belonging to the Power Variance Function family are supported. Several methods facilitate access to predicted survival and cumulative hazard curves, both for an individual and on a population level. An extensive number of summary measures and statistical tests are also provided.
منابع مشابه
Analysis of Birth Spacing Using Frailty Models
Background and objectives: Birth spacing is an important variable for identification of fertility acceleration, total fertility rate, and maternal and fetal health. Therefore, special attention has been paid to this issue by researchers in the fields of medical sciences, health, and population. In addition, proper analysis of this concept is of foremost importance. Application of classical anal...
متن کاملfrailtyHL: A Package for Fitting Frailty Models with H-likelihood
We present the frailtyHL package for fitting semi-parametric frailty models using hlikelihood. This package allows lognormal or gamma frailties for random-effect distribution, and it fits shared or multilevel frailty models for correlated survival data. Functions are provided to format and summarize the frailtyHL results. The estimates of fixed effects and frailty parameters and their standard ...
متن کاملFRAILTYPACK: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation
Frailty models are very useful for analysing correlated survival data, when observations are clustered into groups or for recurrent events. The aim of this article is to present the new version of an R package called frailtypack. This package allows to fit Cox models and four types of frailty models (shared, nested, joint, additive) that could be useful for several issues within biomedical rese...
متن کاملCox and Frailty Models for Analysis of Esophageal Cancer Data
By existing censor and skewness in survival data, some models such as weibull are used to analyzing survival data. In addition, parametric and semiparametric models can be obtained from baseline hazard function of Cox model to fit to survival data. However these models are popular because of their simple usage but do not consider unknown risk factors, that's why cannot introduce the be...
متن کاملBayesian semiparametric dynamic frailty models for multiple event time data.
Many biomedical studies collect data on times of occurrence for a health event that can occur repeatedly, such as infection, hospitalization, recurrence of disease, or tumor onset. To analyze such data, it is necessary to account for within-subject dependency in the multiple event times. Motivated by data from studies of palpable tumors, this article proposes a dynamic frailty model and Bayesia...
متن کامل